

Линейно-оптические методы генерации ресурсных состояний для квантовых вычислений ^{Флджян} Сурен Центр Квантовых технологий МГУ

«Суперкомпьютерные дни в России» международная научная конференция 27 сентября 2022 г.

Приготовление перепутанности линейной оптикой

Двухфотонная интерференция Интерференция множества

Линейно оптическое преобразование

Многоканальное (М-каналов) ЛО преобразование фотонов (N-фотонов): М

$$\begin{aligned} a_{i}^{\dagger} &= \sum_{j=1}^{M} U_{ji} b_{j}^{\dagger}, \quad \dim(U) = M \times M. \quad [b_{i}, b_{j}^{\dagger}] = \delta_{ij} \Rightarrow UU^{\dagger} = I. \\ |\mathbf{t}\rangle &= |t_{1}, t_{2}, t_{3} \dots \rangle = \prod_{i=1}^{M} \frac{a_{i}^{\dagger t_{i}}}{\sqrt{t_{i}!}} |0\rangle = \frac{1}{\sqrt{\mathbf{t}!}} \prod_{i=1}^{M} a_{i}^{\dagger t_{i}} |0\rangle \rightarrow \\ \rightarrow |\Psi\rangle &= \frac{1}{\sqrt{t}} \prod_{i=1}^{M} \left(\sum_{i=1}^{M} U_{ii} b_{i}^{\dagger}\right)^{t_{i}} |0\rangle = \sum_{i=1}^{N} c_{at} |\mathbf{s}\rangle. \end{aligned}$$

$$\rightarrow |\Psi
angle = rac{1}{\sqrt{\mathbf{t}!}} \prod_{i=1}^{M} \left(\sum_{j=1}^{M} U_{ji} b_j^{\dagger}
ight) \quad |0
angle = \sum_{\mathbf{s}} c_{\mathbf{st}} |\mathbf{s}
angle.$$
Кол-во слагаемых: $rac{(M+N-1)!}{N!(M-1)!}$

Матрица рассеяния: $U_{st} = U[s_1, s_2, \dots | t_1, t_2, \dots], \quad \dim(U_{st}) = N \times N$ Амплитуда вероятности: $C_{st} = \frac{\operatorname{perm}(U_{st})}{\sqrt{s!t!}}$ Перманент: $\operatorname{perm}(M) = \sum_{\sigma \in S_N} \prod_{i=1}^N M_{i\sigma_i} = (-1)^N \sum_{\mathcal{S} \subseteq \{1, 2..., N\}} (-1)^{|\mathcal{S}|} \prod_{i=1}^N \sum_{j \in \mathcal{S}} M_{ij},$ лучший алгоритм $O(N2^N)$

Фотонное кодирование кубитов

Однорельсовое

Двурельсовое

Физическое состояние кубита:

 $|\Psi_Q\rangle = a|0\rangle + b|1\rangle$

Минусы: неопределенное число фотонов, чувствительность к потерям, сложные 1-кубитные операции.

$$|\Psi_Q\rangle = a|10\rangle + b|01\rangle$$

Плюсы: фиксированное число фотонов, борьба с потерями геральдингом, нечувствительны к относительному фазовому сдвигу, детерминистические 1-кубитные операции.

Двурельсово закодированные запутанные состояния

Двурельсовое кодирование кубита в состояния Фока: $|0
angle_L=|10
angle, \quad |1
angle_L=|01
angle$

2-фотонные состояния в логическом базисе: $|1010\rangle$, $|1001\rangle$, $|0110\rangle$, $|0101\rangle$ 2-фотонные состояния вне логического базиса: $|1100\rangle$, $|0011\rangle$, $|2000\rangle$, $|0200\rangle$, $|0020\rangle$, $|0002\rangle$

Произвольное 2-кубитное состояние (с точностью до 1-кубитных вращений):

$$|\Phi(\alpha)\rangle = \cos \alpha |00\rangle_L + \sin \alpha |11\rangle_L = \cos \alpha |1010\rangle + \sin \alpha |0101\rangle$$

Угловой параметр α определяет степень перепутанности $(0 \le \alpha \le \frac{\pi}{4})$.

Максимально перепутанное состояние Белла при $\alpha = \frac{\pi}{4}$:

$$|\Phi\rangle = \frac{|1010\rangle + |0101\rangle}{\sqrt{2}}$$

Предложенные схемы приготовления состояний Белла

Состояние на выходе геральдированной схемы:

 $|\Psi^{(out)}
angle = \sqrt{p}|\Phi
angle|\mathbf{d}
angle_a + \sqrt{1-p}|R
angle_{sa},$ необходимое условие: $_a\langle \mathbf{d}|R
angle_{sa} = 0$

MSU

Quantum

Technologies

Удачное приготовление геральдируется измерением фотонов в выходах «*а*». **Больше деталей**:

S.A. Fldzhyan, M.Yu. Saygin, S.P. Kulik, Phys. Rev. Research 3, 043031 (2021) S.A. Fldzhyan, M.Yu. Saygin, S.P. Kulik, arXiv:2204.08788 (2022)

М-порт интерферометр – сетка 2-порт элементов

2-порт элемент:

Тривиальные элементы сетки

Параметризованные элементы интерферометра

Тождественное преобразование

Передаточная матрица элемента:

$$T_{j} = \begin{pmatrix} e^{i\varphi_{j}}\sin\theta_{j} & \cos\theta_{j} \\ e^{i\varphi_{j}}\cos\theta_{j} & -\sin\theta_{j} \end{pmatrix}$$

Перестановка

$$\theta = \pi/2, \varphi_j = \pi$$

Компьютерная оптимизация

В общем случае:
$$|\Psi^{(in)}\rangle = |\mathbf{t}\rangle \rightarrow |\Psi^{(out)}\rangle = \sum_{\mathbf{s}} \frac{\operatorname{perm}(U_{st})}{\sqrt{s!t!}} |\mathbf{s}\rangle.$$

В идеальном случае выходное состояние: $|\Psi\rangle = \sqrt{p} |\Phi\rangle_s |\mathbf{d}\rangle_a + \sqrt{1-p} |R\rangle_{sa}$, где $\langle \mathbf{d} | R \rangle_{sa} = 0$. В то же время вероятность p максимальна. φ_j
Ищем минимум целевой функции:
 $\mathbf{CF}(\theta, \varphi) = -p^{\mu}F + \varepsilon \sum_{j} (\sin^2 2\theta_j + \sin^2 \phi_j),$
максимизирует p и F подавляет нетривиальные элементы
где $F = \frac{|\langle \chi_{\mathbf{d}} | \Phi \rangle|^2}{p}, p = \langle \chi_{\mathbf{d}} | \chi_{\mathbf{d}} \rangle$ и $|\chi_{\mathbf{d}} \rangle = {}_a \langle \mathbf{d} | \Psi^{(out)} \rangle_{sa}$
 $F = 1 \iff |\chi_d\rangle \sim |\Phi\rangle$

Вариант 1. Приготовление параметризованных 2-кубитных состояний статическим запутывающим гейтом CZ.

Произвольное 2-кубитное состояние (с точностью до 1-кубитных вращений):

$$\begin{split} |\Phi(\alpha)\rangle &= \cos \alpha |00\rangle_L + \sin \alpha |11\rangle_L, \quad (0 \le \alpha \le \frac{\pi}{4}) \\ |0\rangle_L & R_y(2\alpha) & \sqrt{p} |\Phi(\alpha)\rangle + \sqrt{1-p} |non - logic\rangle \\ |0\rangle_L & H & Z & H \\ \end{split}$$
Odda u ta же вероятность для всех α пост-селектируемого (не геральдинг)
CZ гейта $p = 1/9$

J.Carolan et al., Science 349, 6249, p. 711 (2015)

Вариант 2. Приготовление параметризованных 2-кубитных состояний переменным запутывающим гейтом Cphase.

K. Lemr et al., PRL 106, 013602 (2011)

MSU

Quantum Technologies

Centre

Схемы приготовления перепутанных состояний

MSU

Quantum Technologies

Centre

MSU Результаты оптимизации Quantum Technologies Centre Вероятность приготовления $\cos\alpha|1010\rangle + \sin\alpha|0101\rangle$ 10⁰ Использованы 5 каналов универсальные схемы 6 каналов из М²-1 параметров. Гейтовые схемы p(a) 10^{-1} 20 25 35 0 5 10 15 30 40 45 α, °

Компактная схема приготовления

 $12.5^o \lesssim \alpha \lesssim 45^o$:

Компактная схема для 6-канального приготовления не найдена

MSU

Quantum

Centre

Technologies

Однопараметрические 6-канальные схемы приготовления

 $0^o \leq \alpha \leq 5^o$: $d = -\frac{1}{4} \left(c(\sqrt{\tan \alpha} + \frac{1}{\sqrt{\tan \alpha}}) - \sqrt{c^2 (\tan \alpha + \frac{1}{\tan \alpha})(\tan^2 \alpha + 1) + 4(1 - 4c^2)} \right) \xrightarrow[\alpha \to 0]{} 0,$ $l = \sqrt{2(c + d\sqrt{\tan\alpha})(d + c\sqrt{\tan\alpha})} / \sqrt[4]{\tan\alpha} \xrightarrow[\alpha \to 0]{} 1, \quad a = \sqrt{\sqrt{\tan\alpha}} \frac{c + d\sqrt{\tan\alpha}}{d + c\sqrt{\tan\alpha}} + (1 + \tan\alpha)^{-1} \xrightarrow[\alpha \to 0]{} 1,$ $g = \frac{1}{\sqrt{2}}\sqrt{1 - a^2(1 + \tan \alpha)} \xrightarrow[\alpha \to 0]{} 0, \quad b = a\sqrt{\tan \alpha} \xrightarrow[\alpha \to 0]{} 0.$

При стремлении угла к нулю правильная асимптотика – матрица перестановки.

Результаты анализа

Bartolucci et al., arXiv:2106.13825 (2021)

Результаты анализа

Bleeding-схема генерации состояний Белла:

N = 4

– случайные пропускания светоделителей.

1

W– одинаковая для каждого слоя.

Спасибо за внимание!