Parallel efficiency of monolithic and fixed-strain solution strategies for porcelasticity problems

Denis Anuprienko Institute of Numerical Mathematics, **Nuclear Safety Institute**

RuSCDays 2022

Motivation

GeRa (Geomigration of Radionuclides) – subsurface simulator

gera.ibrae.ac.ru

www.ibrae.ac.ru

- Thermo-hydro-mechanical processes near
- radioactive waste repositories
- Coupled multyphysical problems
- Efficient parallel solvers are a must
- Poroelasticity is a simple first step
- Scalability of different concepts can be
- tested

Poroelasticity

Poroelasticity

www.ibrae.ac.ru

Flow in porous media

Elastic deformation of the media

Groundwater flow: mass conservation + Darcy's law + volume change

$$s_{stor} \frac{\partial h}{\partial t} - \nabla \cdot \left(\mathbf{K} \nabla h \right) + \alpha \nabla \cdot \frac{\partial \mathbf{u}}{\partial t} = Q$$

Elasticity: mechanical equilibrium + Hooke's law + water pressure

 $\nabla \cdot \left(\mathbb{C} \frac{(\nabla \mathbf{u}) + (\mathbf{v})}{2} \right)$

Primary variables are water head h and solid displacement u

$$\frac{-\left(\nabla \mathbf{u}\right)^{\mathrm{T}}}{2} - \alpha P\mathbf{I} = \mathbf{f}$$

Numerical solution: challenges

Unstructured grids:

- Layered domains
- "Flat" cells
- Cells can be general polyhedra

- Strong heterogeneity
- Anisotropy

Spatial discretization: flow

The finite volume method (FVM):

- Locally conservative
- Can handle wide class of cell shapes
- Easy to implement and is widely used
- Flux approximation is the key issue

TPFA

MPFA-O

es ed

Spatial discretization: mechanics

Recently introduced virtual element method (VEM):

- Works on arbitrary cells
- Is algorithmically similar to conventional FEM
- Grows in popularity, gains theory
- Is used in multiphysics with FVM!

Temporal discretization

Fully implicit (backward Euler) scheme:

- Conventional for subsurface modeling
- Unconditionally stable
- Produces a linear system

Structure of the coupled system

www.ibrae.ac.ru

Solution strategies

Coupling

Monolithic

Solving the full system

- Unconditionally stable
- Large matrix
- Complicated matrix pattern

Fixed-strain

Sequential flow and mechanics substeps

- Can use tailored solvers
- Less memory-consuming
- Conditionally stable
- Adds an iterative loop on each time step

Implementation

The INMOST (www.inmost.org) numerical platform written in C++ provides

- Unstructured mesh handling
- Automatic differentiation tools for systems assembly
- Linear solvers
- MPI parallelization:
 - Mesh partitioning
 - Parallel linear solvers

Parallel efficiency test

The idea:

- Fixed-strain strategy solves smaller systems with simpler structure
- A general-purpose black-box linear solver with no tuning can work better
- INMOST solver Inner_MPTILUC was used

Problem A: faulted reservoir

- A 3-layer domain with fault
- 1 700 000 unknowns
- 4 time steps, 127 years
- 8-100 cores

no flow, no normal displacement

- 8.9e+07 - 8e+7

- 4e+7

– 2e+7

___0.0e+00

Problem A: results

Fixed-strain scales better

- Assembly takes larger fraction of time
- Assembly naturally scales better

Problem B: real-life domain

A 9-layer domain, 11 media

Injection in 8th layer

- 5 460 000 unknowns
- 2 time steps, 6 years
- 40-600 cores

Both scale *superlinearly!*

Monolithic even scales better

Speed-up

www.ibrae.ac.ru

Problem B: total speed-up

Problem B: why superlinear?

Problem B: monolithic strategy

The reason is superior scaling of MPTILUC preconditioner, default

drop tolerance makes it closer to full *LU*-decomposition

Problem B: why sublinear assembly scaling?

- Non ideal mesh partitioning
- Assembly takes larger
 fraction of time in fixedstrain strategy
- It's the reason why fixedstrain scales worse

Assembly Preconditioner Iterations

Conclusions

- Efficient solvers are required for multyphics
- Monolithic and splitting strategies are considered for poroelasticity problems discretized on unstructured meshes
- Strategies were tested in parallel with no tuning of linear solver or mesh partitioner
- No clear answer on which scales better
- Side note: INMOST linear solvers can handle coupled systems

Thank you for your attention!

www.ibrae.ac.ru

