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Motivation

Thermo-hydro-mechanical processes near

radioactive waste repositories

Vnmfled waste
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Coupled multyphysical problems

Efficient parallel solvers are a must

Poroelasticity I1s a simple first step

Geochemical
reaction of
buffer material
and porewater

Scalabillity of different concepts can be

tested

GeRa (Geomigration of Radionuclides) — subsurface simulator

gera.ilbrae.ac.ru

www.ibrae.ac.ru



http://www.gera.ibrae.ac.ru/

Poroelasticity ' %3

Flow In porous media
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Governing equations: Biot model

= Groundwater flow: mass conservation + Darcy’s law + volume change
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= Elasticity: mechanical equilibrium + Hooke's law + water pressure
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= Primary variables are water head A4 and solid displacement u
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Numerical solution: challenges

Unstructured grids:
 Layered domains
« “Fat” cells

» (Cells can be general polyhedra
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Hydraulic conductivit

« Strong heterogeneity

* Anisotropy
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Spatial discretization: flow

TPFA

The finite volume method (FVM):
= [ocally conservative
= Can handle wide class of cell shapes

= Easy to implement and is widely used

= Flux approximation is the key issue
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Spatial discretization: mechanics

Recently introduced virtual element

method (VEM):

= Works on arbitrary cells

= [s algorithmically similar to
conventional FEM

= (Grows in popularity, gains theory

= |s used in multiphysics with FVM!
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Temporal discretization

Fully implicit (backward Euler) scheme:
= (Conventional for subsurface modeling
= Unconditionally stable

= Produces a linear system
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Structure of the coupled system

FVM for flow VEM for the coupling terms
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Solution strategies

Coupling

Sequential flow and
mechanics substeps

» Unconditionally stable . Can use tailored solvers

Solving the full system

* Large matrix + Less memory-consuming

» Complicated matrix . Conditionally stable

pattern » Adds an iterative loop on

each time step
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Implementation

The INMOST (www.inmost.org) numerical platform written in C++ provides

= Unstructured mesh handling
= Automatic differentiation tools for systems assembly
= Linear solvers

= MPI parallelization:
e Mesh partitioning

e Parallel [inear solvers
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http://www.inmost.org/

Parallel efficiency test

The idea:
= Fixed-strain strategy solves smaller systems with simpler structure
= A general-purpose black-box linear solver with no tuning can work better

= INMOST solver Inner MPTILUC was used
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Problem A: faulted reservoir

A 3-layer domain with fault
= 1 700 000 unknowns
= 4 time steps, 127 years

= 8-100 cores
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h=10193.7 m

h = 305.81 m, free boundary

Sedimentary fill

Storage aquifer

no flow, no normal displacement
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Problem A: results

Total speed-up

14 | | | | | | | | |
Fixed-strain scales better o
S o
= Assembly takes larger fraction of g of
T Linear
: 2 L Monolithic —x¢— _
t|me Fixed-strain splitting —x—
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m Assembly m Preconditioner Iterations
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Problem B: real-life domain

A 9-layer domain, 11 media

1
A )

Injection in 8" layer

Water_Head

= 5460 000 unknowns

200
1.0e+02

= 2 time steps, 6 years

= 40-000 cores

Displacement Magnitude
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Problem B: results

Problem B: total speed-up

20 | I | I I
18 :
Both scale superiinearly! 12 >
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Problem B: why superlinear?

Problem B: monolithic strategy Problem B: fixed-strain splitting
2
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The reason is superior scaling of MPTILUC preconditioner, detault

drop tolerance makes it closer to full LU~-decomposition
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Problem B: why sublinear assembly scaling?

= Non ideal mesh partitioning Monolithic Fixed-strain splitting

= Assembly takes larger '
fraction of time In fixed-

strain strategy

[

= [t's the reason why fixed-

strain scales worse = Assembly m Preconditioner lterations
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Conclusions

= Efficient solvers are required for multyphics

= Monolithic and splitting strategies are considered for
poroelasticity problems discretized on unstructured meshes

= Strategies were tested in parallel with no tuning of linear solver
or mesh partitioner

= No clear answer on which scales better

= Side note: INMOST linear solvers can handle coupled systems
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Thank you for your attention!




